Recordings and Analysis of Atomic Ledge and Dislocation Movements in InGaAs to Nickelide Nanowire Phase Transformation.

نویسندگان

  • Renjie Chen
  • Shadi A Dayeh
چکیده

The formation of low resistance and self-aligned contacts with thermally stable alloyed phases is a prerequisite for realizing reliable functionality in ultrascaled semiconductor transistors. Detailed structural analysis of the phase transformation accompanying contact alloying can facilitate contact engineering as transistor channels approach a few atoms across. Original in situ heating transmission electron microscopy studies are carried out to record and analyze the atomic scale dynamics of contact alloy formation between Ni and In0.53 Ga0.47 As nanowire channels. It is observed that the nickelide reacts on the In0.53 Ga0.47 As (111) || Ni2 In0.53 Ga0.47 As (0001) interface with atomic ledge propagation along the Ni2 In0.53 Ga0.47 As [101¯0] direction. Ledges nucleate as a train of strained single-bilayers and propagate in-plane as double-bilayers that are associated with a misfit dislocation of b→=2c3[0001]. The atomic structure is reconstructed to explain this phase transformation that involves collective gliding of three Shockley partials in In0.53 Ga0.47 As lattice to cancel out shear stress and the formation of misfit dislocations to compensate the large lattice mismatch in the newly formed nickelide phase and the In0.53 Ga0.47 As layers. This work demonstrates the applicability of interfacial disconnection (ledge + dislocation) theory in a nanowire channel during thermally induced phase transformation that is typical in metal/III-V semiconductor reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of 1/f and 1/f Noise for InP DHBT

This work reports experimental data comparing the low frequency noise spectrum of InP based HBTs. Double heterojunction device structures are examined with and without surface passivation ledges. INTRODUCTION Compound semiconductor InP heterojunction bipolar transistors (HBTs) hold great promise for ultra high-speed analog microwave circuit applications. The low frequency noise characteristics ...

متن کامل

Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...

متن کامل

Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels.

Alloyed and compound contacts between metal and semiconductor transistor channels enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. Here, we report on the dynamics of the...

متن کامل

Size and Orientation Effects on the Kinetics and Structure of Nickelide Contacts to InGaAs Fin Structures.

The rapid development of ultrascaled III-V compound semiconductor devices urges the detailed investigation of metal-semiconductor contacts at nanoscale where crystal orientation, size, and structural phase play dominant roles in device performance. Here, we report the first study on the solid-state reaction between metal (Ni) and ternary III-V semiconductor (In0.53Ga0.47As) nanochannels to reve...

متن کامل

An Ab initio and chemical shielding tensors calculations for Nucleotide 5’-Monophosphates in the Gas phase

Structural and magnetic properties of purine and pyrimidine nucleotides (CMP, UMP, dTMP, AMP, GMP, IMP) were studied at different levels of ab initio molecular orbital theory. These calculations were performed at the hartree-fock level and density functional B3LYP methods. Geometries were fully optimized by following Cs symmetry restrictions. The standard 6-31G** basis set which includes polari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 13 30  شماره 

صفحات  -

تاریخ انتشار 2017